首页> 外文OA文献 >Pulsatile Viscous Flows in Elliptical Vessels and Annuli: Solution to the Inverse Problem, with Application to Blood and Cerebrospinal Fluid Flow
【2h】

Pulsatile Viscous Flows in Elliptical Vessels and Annuli: Solution to the Inverse Problem, with Application to Blood and Cerebrospinal Fluid Flow

机译:椭圆形的脉动粘性流 容器和环面:反问题的解决方案,包括 在血液和脑脊髓液中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider the fully-developed flow of an incompressible Newtonian fluid in a cylindrical vessel with elliptical cross-section and in an annulus between two confocal ellipses. Since flow rate is the main physical quantity which can be actually be derived from measurements, we address the \textit{inverse problem} to compute the velocity field associated with a given, time-periodic flow rate. We propose a novel numerical strategy, which is nonetheless grounded on several analytical relations and which leads to the solution of systems of ordinary differential equations. Our method holds promise to be more amenable to implementation than previous ones based on challenging computation of Mathieu functions. We report numerical results based on measured data for human blood flow in the internal carotid artery, and cerebrospinal fluid flow in the upper cervical region of the human spine. Computational efficiency is shown, but the main goal of the present study is to provide an improved source of initial/boundary data, as well as a benchmark solution for pulsatile flows in elliptical sections and the proposed method has potential applications to bio-fluid dynamics investigations (e.g. to address aspects of relevant diseases), to biomedical applications (e.g. targeted drug delivery and energy harvesting for implantable devices), up to longer-term medical microrobotics applications.
机译:我们考虑了不可压缩的牛顿流体在具有椭圆形横截面的圆柱形容器中以及两个共焦椭圆之间的环空中的充分发展的流动。由于流速是可以实际从测量中得出的主要物理量,因此我们要解决\ textit {inverse问题},以计算与给定时间周期流速相关的速度场。我们提出了一种新颖的数值策略,该策略仍然基于几种解析关系,并导致了常微分方程组的求解。基于对Mathieu函数的挑战性计算,我们的方法有望比以前的方法更易于实现。我们基于在颈内动脉的人血流量以及在人的脊柱上颈区的脑脊髓液流量的测量数据报告数值结果。虽然显示了计算效率,但本研究的主要目标是提供改进的初始/边界数据源,以及椭圆形截面中脉动流的基准解决方案,并且该方法在生物流体动力学研究中具有潜在的应用价值(例如,解决相关疾病的各个方面),生物医学应用(例如,针对可植入设备的靶向药物输送和能量收集)以及长期的医学微型机器人应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号